A GMM-Based Feature Selection Algorithm for Multi-Class Classification
نویسندگان
چکیده
منابع مشابه
Multi-class feature selection for texture classification
In this paper, a multi-class feature selection scheme based on recursive feature elimination (RFE) is proposed for texture classifications. The feature selection scheme is performed in the context of one-against-all least squares support vector machine classifiers (LSSVM). The margin difference between binary classifiers with and without an associated feature is used to characterize the discrim...
متن کاملFeature Subset Selection for Multi-class SVM Based Image Classification
Multi-class image classification can benefit much from feature subset selection. This paper extends an error bound of binary SVMs to a feature subset selection criterion for the multi-class SVMs. By minimizing this criterion, the scale factors assigned to each feature in a kernel function are optimized to identify the important features. This minimization problem can be efficiently solved by gr...
متن کاملDirect Sparsity Optimization Based Feature Selection for Multi-Class Classification
A novel sparsity optimization method is proposed to select features for multi-class classification problems by directly optimizing a l2,p -norm ( 0 < p ≤ 1 ) based sparsity function subject to data-fitting inequality constraints to obtain large between-class margins. The direct sparse optimization method circumvents the empirical tuning of regularization parameters in existing feature selection...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملA Novel Approach to Feature Selection Using PageRank algorithm for Web Page Classification
In this paper, a novel filter-based approach is proposed using the PageRank algorithm to select the optimal subset of features as well as to compute their weights for web page classification. To evaluate the proposed approach multiple experiments are performed using accuracy score as the main criterion on four different datasets, namely WebKB, Reuters-R8, Reuters-R52, and 20NewsGroups. By analy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2009
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.e92.d.1584